Single-walled carbon nanotube pillars: a superhydrophobic surface.
نویسندگان
چکیده
A series of SWNT arrays have been constructed by disproportionation of carbon monoxide on Co-Mo catalyst films deposited on flat Si wafer substrates. The arrays include a two-dimensional SWNT thin film prepared by spraying a SWNT suspension, as well as random SWNT networks, and vertically aligned SWNT. In addition, a novel SWNT array has been developed and termed SWNT "pillars". These pillars are prepared by controlled synthesis of SWNT over a templated substrate. When water droplets are deposited on these surfaces, it is observed that the static contact angle changes dramatically with the type of SWNT array. The higher is the degree of surface roughness (at the nano and microscales) of these structures, the higher is the contact angle. The novel SWNT pillars exhibit superhydrophobicity (i.e., contact angle approximately 160 degrees). To quantify the effect of surface roughness, two simple models have been employed. The Wenzel model can be used to quantify the behavior of the SWNT thin films while the Cassie-Baxter model is used for the SWNT arrays with three-dimensional structure (grass, forest, and pillars).
منابع مشابه
Single walled carbon nanotube in the reaction layer of gas diffusion electrode for oxygen reduction reaction
In this paper, the effect of surface area of reaction layers in gas diffusion electrodes on oxygen reduction reaction was investigated. For this purpose, various amounts (0.1, 0.2, 0.3, 0.4, 0.5, 1, 1.5 and zero %wt of total loading of reaction layer) of single walled carbon nanotube (SWCNT) were inserted in the reaction layer. The performance of gas diffusion electrodes for oxygen reduction re...
متن کاملInteraction of some heavy metal ions with single walled carbon nanotube
The interaction between some heavy metal ions such as of Pb(II), Cd(II) and Cu(II) ions from aqueous solution adsorbed by single walled carbon nanotube (SWCNTs) and carboxylate group functionalized single walled carbon nanotube (SWCNT-COOH) surfaces were studied by atomic absorption spectroscopy. The effect of contact time, pH, initial concentration of ion, ionic strength and temperature on the...
متن کاملIncreasing the hydrogen storage capacity of single-walled carbon nanotube (SWNT) through facile impregnation by TiO2, ZrO2 and ZnO nanocatalysts
Various nanocomposites of TiO2, ZnO and ZrO2 decorated single wall Carbon nanotubes (SWNTs) were fabricated by facile and template free continuous ultrasonication/stirring of virgin metal oxide nanopowders and SWNTs in ethanol under UV-light illumination. The TEM micrographs showed that nanoparticles (NPs) were uniformly dispersed and bonded on the surface of SWNTs. The results of XRD as well a...
متن کاملInteraction of some heavy metal ions with single walled carbon nanotube
The interaction between some heavy metal ions such as of Pb(II), Cd(II) and Cu(II) ions from aqueous solution adsorbed by single walled carbon nanotube (SWCNTs) and carboxylate group functionalized single walled carbon nanotube (SWCNT-COOH) surfaces were studied by atomic absorption spectroscopy. The effect of contact time, pH, initial concentration of ion, ionic strength and temperature on the...
متن کاملModeling of the adsorption kinetics of Basic Red 46 on single-walled carbon nanotube and carboxylate group functionalized single-walled carbon nanotube
The present study was carried out to investigate the potential of single-walled carbon nanotube (SWCNTs) and carboxylate group functionalized single-walled carbon nanotube (SWCNT-COOH) as alternative adsorbents for the removal of Basic Red 46 (BR 46) from contaminated water by using batch adsorption studies. Effects of some key operating parameters such as pH, ionic strength and contact time on...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 25 8 شماره
صفحات -
تاریخ انتشار 2009